Alignment of multiple glial cell populations in 3D nanofiber scaffolds: toward the development of multicellular implantable scaffolds for repair of neural injury.

نویسندگان

  • Alan Weightman
  • Stuart Jenkins
  • Mark Pickard
  • Divya Chari
  • Ying Yang
چکیده

UNLABELLED Non-neuronal cells of the central nervous system (CNS), termed "neuroglia," play critical roles in neural regeneration; therefore, replacement of glial populations via implantable nanofabricated devices (providing a growth-permissive niche) is a promising strategy to enhance repair. Most constructs developed to date have lacked three-dimensionality, multiple glial populations and control over spatial orientations, limiting their ability to mimic in vivo neurocytoarchitecture. We describe a facile technique to incorporate multiple glial cell populations [astrocytes, oligodendrocyte precursor cells (OPCs) and oligodendrocytes] within a three-dimensional (3D) nanofabricated construct. Highly aligned nanofibers could induce elongation of astrocytes, while OPC survival, elongation and maturation required pre-aligned astrocytes. The potential to scale-up the numbers of constituent nanofiber layers is demonstrated with astrocytes. Such complex implantable constructs with multiple glial sub-populations in defined 3D orientations could represent an effective approach to reconstruct glial circuitry in neural injury sites. FROM THE CLINICAL EDITOR Clinically available methods to enhance nervous tissue regeneration remain scarce despite decades of research. In this study, a novel 3D nanofabricated construct is demonstrated, that includes populations of astrocytes, oligodendrocyte precursor cells and oligodendrocytes providing a well-orchestrated glial microenvironment for more efficient central nervous system repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Biodegradable Engineered Nanofiber Scaffolds Seeded with Hair Follicle Stem Cells for Tissue Engineering

Background: The aim of this study was to fabricate the poly caprolactone (PCL) aligned nanofiber scaffold and to evaluate the survival, adhesion, proliferation, and differentiation of rat hair follicle stem cells (HFSC) in the graft material using electrospun PCL nanofiber scaffold for tissue engineering applications. Methods: The bulge region of rat whisker was isolated and cultured in DMEM: n...

متن کامل

Designing Nanofiber Multilayer Composite Scaffolds and Lyophilized Blood Growth Factors in the Process of Osteogenesis

     Background and purpose: Tissue engineering and cell therapy, as promising therapies, provide the opportunity to repair bone lesions and defects. Combined scaffolds, synthetic and natural polymers can provide a suitable structure for differentiation of Wharton Jelly mesenchymal stem cells (WJ-MSCs) into bone. In current study, the effect of lyophilized blood growth factors in promoting the ...

متن کامل

Aligned Poly(ε-caprolactone) Nanofibers Guide the Orientation and Migration of Human Pluripotent Stem Cell-Derived Neurons, Astrocytes, and Oligodendrocyte Precursor Cells In Vitro.

Stem cell transplantations for spinal cord injury (SCI) have been studied extensively for the past decade in order to replace the damaged tissue with human pluripotent stem cell (hPSC)-derived neural cells. Transplanted cells may, however, benefit from supporting and guiding structures or scaffolds in order to remain viable and integrate into the host tissue. Biomaterials can be used as support...

متن کامل

The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold

In this study, a system of dexamethasone sodium phosphate (DEXP)-loaded chitosan nanoparticles embedded in poly-ε-caprolacton (PCL) and gelatin electrospun nanofiber scaffold was introduced with potential therapeutic application for treatment of the nervous system. Besides anti-inflammatory properties, DEXP act through its glucocorticoid receptors, which are involved in the inhibition of astroc...

متن کامل

Biodegradable Cell-Seeded Nanofiber Scaffolds for Neural Repair

Central and peripheral neural injuries are traumatic and can lead to loss of motor and sensory function, chronic pain, and permanent disability. Strategies that bridge the site of injury and allow axonal regeneration promise to have a large impact on restoring quality of life for these patients. Engineered materials can be used to guide axonal growth. Specifically, nanofiber structures can mimi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanomedicine : nanotechnology, biology, and medicine

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 2014